Important Notice:

\& The answer paper Must be submitted before 27 Feb 2021 at 5:00pm.
© The answer paper MUST BE sent to the CU Blackboard.
The answer paper Must include your name and student ID.

Answer ALL Questions

1. (10 points)

Let $f(x)=\operatorname{sgn}\left(\sin \frac{\pi}{x}\right)$ for $x \neq 0$ and $f(0)=0$, where sgn denotes the sign function.
Show that f is Riemann integrable over $[-1,1]$ and find $\int_{-1}^{1} f(x) d x$.

$$
* * * \text { See Next Page } * * *
$$

2. (20 points)

Let f be a continuous real-valued function defined on \mathbb{R}.
(a) Suppose that there are constants c_{0} and c_{1} such that

$$
\lim _{x \rightarrow 0} \frac{f(x)-c_{0}-c_{1} x}{x}=0 .
$$

Show that $f^{\prime}(0)$ exists.
(b) Suppose that f is a C^{1}-function and there are constants c_{0}, c_{1} and c_{2} such that

$$
\lim _{x \rightarrow 0} \frac{f(x)-c_{0}-c_{1} x-c_{2} x^{2}}{x^{2}}=0
$$

Does it imply that the second derivative of f at 0 exist?

3. (20 points)

Let $f:(0,1) \rightarrow \mathbb{R}$ be a function given by

$$
f(x)= \begin{cases}\frac{1}{p} & \text { if } x=\frac{q}{p} \text { and } p, q \text { are relatively prime positive integers; } \\ 0 & \text { if } x \text { is irrational. }\end{cases}
$$

(a) Describe the continuity of f.
(b) Describe the differentiability of f.

Justify your answer by using the definitions.

